Uncertainty analysis for design of a graphene resonant gyroscope

Microsystem Technologies(2024)

引用 0|浏览0
暂无评分
摘要
With considerably small structure and ultrahigh sensitivity, the graphene resonant gyroscope has been widely used in aviation, aerospace and deep-sea exploration where sensing the extremely weak angular velocity changes is required. However, small difference in the size of graphene resonant gyroscope caused by inherent uncertainties in various processing and material parameters will lead to huge differences in the output results. This will reduce the reliability of graphene resonant gyroscope. Based on the above issues, the uncertainty analysis method is adopted to establish a numerical model on the direct output resonant frequency and sensitivity of the graphene resonant gyroscope, and a random model based on sampling is introduced. The influence of the uncertainty of six input parameters on the graphene resonant frequency and sensitivity output is clarified, and thus the effect degree of the main parameters, which play a key role in the performance of the graphene resonant gyroscope, is obtained. The results show that the length, width and thickness of the graphene resonant beam have greater impacts on the output parameters, which provides theoretical guidance for the graphene resonant gyroscope to adapt to different measurement ranges.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要