Control of Cell Adhesion and Growth on Polysaccharide-Based Multilayer Coatings by Incorporation of Graphene Oxide

Tonya Andreeva, Alexander Rudt, László Fábián, Ferhan Ayaydin,Ivan Iliev,Ole Jung,Mike Barbeck,Andras Dér,Rumen Krastev,Stefka G. Taneva

Coatings(2024)

引用 0|浏览0
暂无评分
摘要
Controlling cell adhesion, viability, and proliferation on solid surfaces is critical for the successful implantation and proper functioning of temporary and permanent medical devices. While, with temporary or removable implants as well as surgical instruments, even slight cellular adhesion leads to an increased risk of secondary infections, bleeding and other complications, good cellular adhesion and viability are essential for the rapid healing and successful integration of permanent implants. This work was motivated by the growing interest in the construction of biocompatible and biodegradable coatings for the biofunctionalization of medical devices. Polysaccharide-based coatings are well known for their biocompatibility, but they are non-cell-adhesive, which hinders their application as implant coatings. In this study, we demonstrate that the incorporation of one or more graphene oxide layers in hyaluronic acid/chitosan multilayers is one avenue to regulate the degree of unspecific adhesion and growth of different cells (human umbilical vein endothelial cells, HUVEC, and mouse embryonic fibroblasts, 3T3). Furthermore, we demonstrate that this approach allows cell adhesion to be regulated across the entire range between completely prevented and highly promoted cell adhesion without introducing systemic cytotoxicity. These findings may contribute to the establishment of a new approach to adapt medical devices to cells and tissues.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要