Thermal and calorimetric investigations of some vegetative fuels

Fire and Materials(2024)

引用 0|浏览0
暂无评分
摘要
AbstractBushfires pose a significant threat to numerous countries, often causing vast property damages and loss of lives. Efforts to combat and manage these fires heavily rely on predicting the fires' rate of spread and intensity. A significant component of these predictions involves understanding the thermophysical characteristics of vegetative fuels. The accuracy of predictive models (especially physical models) also depends on obtaining precise thermophysical and combustion parameters. This research aims to provide a comprehensive set of thermal degradation and combustion parameters for surface and near‐surface fuel samples collected during prescribed fire experiment conducted in April 2022 in Little Desert National Park, Victoria, Australia. Firstly, fuel properties like fuel height, moisture content, bulk density, fuel load and heat of combustion were meticulously characterized for both surface and near‐surface samples. Then activation energies for degradation reactions were determined using the Flynn–Wall–Ozawa method and for the determination of pre‐exponential factors, in most cases these reactions closely aligned with a Second order model. This was followed by determination of other parameters such as heat of reaction, specific heat and conductivity. It was found that the density, activation energy and heat of combustion did not vary significantly across the six samples under question. The comprehensive set of obtained parameters will likely help to facilitate better predictions in fire propagation modelling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要