Mycelium as a scaffold for biomineralized engineered living materials

Ethan Viles, Ethan Heyneman, Shuyi Lin, Virginia Montague,Amir Darabi,Lewis Cox,Adrienne Phillips,Robin Gerlach,Erika Espinosa-Ortiz,Chelsea M Heveran

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
Engineered living materials (ELMs) are garnering considerable attention as a promising alternative to traditional building materials because of their potentially lower carbon footprint and additional functionalities conferred by living cells. However, biomineralized ELMs designed for load-bearing purposes are limited in their current design and usage for several reasons, including (1) low microbial viability and (2) limited control of specimen internal microarchitecture. We created third generation biomineralized ELMs from fungal mycelium scaffolds that were mineralized either by the fungus itself or by ureolytic bacteria. Both self-mineralized (i.e. fungally-mineralized) and bacterially-mineralized scaffolds retained high microbial viability for at least four weeks in room temperature or accelerated dehydration storage conditions, without the addition of protectants against desiccation. The microscale modulus of calcium carbonate varied with the different biomineralized scaffold conditions, and moduli were largest and stiffest for bacterial biomineralization of fungal mycelium. As an example of how mycelium scaffolds can enable the design of complex internal geometries of biomineralized materials, osteonal-bone mimetic architectures were patterned from mycelium and mineralized using ureolytic bacteria. These results demonstrate the potential for mycelium scaffolds to enable new frontiers in the design of biomineralized ELMs with improved viability and structural complexity. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要