Social interactions generate complex selection patterns in virtual worlds.

Journal of evolutionary biology(2024)

引用 0|浏览0
暂无评分
摘要
Understanding the influence of social interactions on individual fitness is key to improving our predictions of phenotypic evolution. However, we often overlook the different components of selection regimes arising from interactions among organisms, including social, correlational, and indirect selection. This is due to the challenging sampling efforts required in natural populations to measure phenotypes expressed during interactions and individual fitness. Furthermore, behaviours are crucial in mediating social interactions, yet few studies have explicitly quantified these selection components on behavioural traits. In this study, we capitalize on an online multiplayer videogame as a source of extensive data recording direct social interactions among prey, where prey collaborate to escape a predator in realistic ecological settings. We estimate natural and social selection and their contribution to total selection on behavioural traits mediating competition, cooperation, and predator-prey interactions. Behaviours of other prey in a group impact an individual's survival, and thus are under social selection. Depending on whether selection pressures on behaviours are synergistic or conflicting, social interactions enhance or mitigate the strength of natural selection, although natural selection remains the main driving force. Indirect selection through correlations among traits also contributed to the total selection. Thus, failing to account for the effects of social interactions and indirect selection would lead to a misestimation of the total selection acting on traits. Dissecting the contribution of each component to the total selection differential allowed us to investigate the causal mechanisms relating behaviour to fitness and quantify the importance of the behaviours of conspecifics as agents of selection. Our study emphasizes that social interactions generate complex selective regimes even in a relatively simple ecological environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要