Can pollen affect precipitation?

crossref(2024)

引用 0|浏览3
暂无评分
摘要
Abstract. Large primary bioparticles such as pollen can be abundant in the atmosphere, for example near surface pollen concentrations above 10 000 particles per cubic meter can occur during intense pollination periods. On one hand, due to their large size (10–100 micrometres), pollens can act as giant cloud condensation nuclei and enhance the collision-coalescence process in clouds that leads to drizzle formation. On the other hand, in humid conditions pollens are known to rupture and release many fine particles that can increase the cloud stability by reducing the droplet size. Additionally, both whole pollen grains and the sub-pollen particles released by pollen rupture are known to act as ice-nucleating particles (INPs). Due to these complex interactions, the role of pollen in modulating the cloud cover and precipitation remains uncertain. We used the UCLALES-SALSA large eddy simulator for simulating birch pollen effects on liquid and mixed-phase clouds. Our simulations show that the pollen concentrations observed during the most intense pollination seasons can locally enhance precipitation from both liquid and mixed phase clouds, while more commonly encountered pollen concentrations are unlikely to cause a noticeable change. The liquid precipitation enhancement depended linearly on the emitted pollen flux in both liquid and mixed phase clouds, however, the slope of this relationship was case dependent. Ice nucleation happened at relevant degree only if the process of rupturing pollens producing large number of fine ice nucleating particles was included in the simulations. The resulting precipitation saturated for the highest INP concentrations. Secondary ice formation by rime splintering had only minor effect in the considered one-day timescale.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要