SHARE: Secure Hardware Allocation and Resource Efficiency in Quantum Systems

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Quantum computing (QC) is poised to revolutionize problem solving across various fields, with research suggesting that systems with over 50 qubits may achieve quantum advantage surpassing supercomputers in certain optimization tasks. As the hardware size of Noisy Intermediate Scale Quantum (NISQ) computers continues to grow, Multi tenant computing (MTC) has emerged as a viable approach to enhance hardware utilization by allowing shared resource access across multiple quantum programs. However, MTC can also bring challenges and security concerns. This paper focuses on optimizing quantum hardware utilization in shared environments by implementing multi programming strategies that not only enhance hardware utilization but also effectively manage associated risks like crosstalk and fault injection. We propose a novel partitioning and allocation method called Community Based Dynamic Allocation Partitioning (COMDAP) and Secure COMDAP to refine and secure multi programming capabilities in quantum systems. COMDAP ensures equitable and efficient resource distribution, addresses the issues of suboptimal partitioning, and significantly improves hardware utilization. We report a 23 percent average improvement in hardware utilization rate compared to existing greedy heuristics, with rates averaging 92 percent. COMDAP introduces an average increase of approximately 0.05X in delta CX, alongside a 3.5 percent average reduction in PST across benchmarks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要