Co-Optimization of EV Charging Control and Incentivization for Enhanced Power System Stability

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
We study how high charging rate demands from electric vehicles (EVs) in a power distribution grid may collectively cause its dynamic instability, and, accordingly, how a price incentivization strategy can be used to steer customers to settle for lesser charging rate demands so that these instabilities can be avoided. We pose the problem as a joint optimization and optimal control formulation. The optimization determines the optimal charging setpoints for EVs to minimize the ℋ_2-norm of the transfer function of the grid model, while the optimal control simultaneously develops a linear quadratic regulator (LQR) based state-feedback control signal for the battery-currents of those EVs to jointly minimize the risk of grid instability. A subsequent algorithm is developed to determine how much customers may be willing to sacrifice their intended charging rate demands in return for financial incentives. Results are derived for both unidirectional and bidirectional charging, and validated using numerical simulations of multiple EV charging stations in the IEEE 33-bus power distribution model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要