Projected poleward migration of the Southern Ocean CO2 sink region under high emissions

Communications Earth & Environment(2024)

引用 0|浏览0
暂无评分
摘要
The Southern Ocean is a major region of ocean carbon uptake, but its future changes remain uncertain under climate change. Here we show the projected shift in the Southern Ocean CO2 sink using a suite of Earth System Models, revealing changes in the mechanism, position and seasonality of the carbon uptake. The region of dominant CO2 uptake shifts from the Subtropical to the Antarctic region under the high-emission scenario. The warming-driven sea-ice melt, increased ocean stratification, mixed layer shoaling, and a weaker vertical carbon gradient is projected to together reduce the winter de-gassing in the future, which will trigger the switch from mixing-driven outgassing to solubility-driven uptake in the Antarctic region during the winter season. The future Southern Ocean carbon sink will be poleward-shifted, operating in a hybrid mode between biologically-driven summertime and solubility-driven wintertime uptake with further amplification of biologically-driven uptake due to the increasing Revelle Factor. The Southern Ocean carbon sink is projected to move poleward under a high emission scenario with increases in the Revelle Factor and carbon uptake that are biologically-driven in summertime and solubility-driven in wintertime linked to sea-ice melt, suggest CMIP6 Earth system model simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要