Chromosome-level genome assembly of Pedicularis kansuensis illuminates genome evolution of facultative parasitic plant.

Molecular ecology resources(2024)

引用 0|浏览3
暂无评分
摘要
Parasitic plants have a heterotrophic lifestyle, in which they withdraw all or part of their nutrients from their host through the haustorium. Despite the release of many draft genomes of parasitic plants, the genome evolution related to the parasitism feature of facultative parasites remains largely unknown. In this study, we present a high-quality chromosomal-level genome assembly for the facultative parasite Pedicularis kansuensis (Orobanchaceae), which invades both legume and grass host species in degraded grasslands on the Qinghai-Tibet Plateau. This species has the largest genome size compared with other parasitic species, and expansions of long terminal repeat retrotransposons accounting for 62.37% of the assembly greatly contributed to the genome size expansion of this species. A total of 42,782 genes were annotated, and the patterns of gene loss in P. kansuensis differed from other parasitic species. We also found many mobile mRNAs between P. kansuensis and one of its host species, but these mobile mRNAs could not compensate for the functional losses of missing genes in P. kansuensis. In addition, we identified nine horizontal gene transfer (HGT) events from rosids and monocots, as well as one single-gene duplication events from HGT genes, which differ distinctly from that of other parasitic species. Furthermore, we found evidence for HGT through transferring genomic fragments from phylogenetically remote host species. Taken together, these findings provide genomic insights into the evolution of facultative parasites and broaden our understanding of the diversified genome evolution in parasitic plants and the molecular mechanisms of plant parasitism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要