Bond-selective effect for the dissociative chemisorption of HOD on the Ni(100) surface revealed at the full-dimensional quantum dynamical level.

The Journal of chemical physics(2024)

引用 0|浏览0
暂无评分
摘要
We present a comprehensive investigation into the dissociative chemisorption of HOD on a rigid Ni(100) surface using an approximate full-dimensional (9D) quantum dynamics approach, which was based on the time-dependent wave-packet calculations on a full-dimensional potential energy surface obtained through neural network fitting to density functional theory energy points. The approximate-9D probabilities were computed by averaging the seven-dimensional (7D) site-specific dissociation probabilities across six impact sites with appropriate relative weights. Our results uncover a distinctive bond-selective effect, demonstrating that the vibrational excitation of a specific bond substantially enhances the cleavage of that excited bond. The product branching ratios are substantially influenced by which bond undergoes excitation, exhibiting a clear preference for the product formed through the cleavage of the excited bond over the alternative product.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要