Long Short-Term Memory Parameter Optimization Based on Improved Sparrow Search Algorithm for Molten Iron Quality Prediction

Metals(2024)

引用 0|浏览0
暂无评分
摘要
Blast furnace (BF) ironmaking is a key process in iron and steel production. Because BF ironmaking is a dynamic time series process, it is more appropriate to use a recurrent neural network for modeling. The long short-term memory (LSTM) network is commonly used to model time series data. However, its model performance and generalization ability heavily depend on the parameter configuration. Therefore, it is necessary to study parameter optimization for the LSTM model. The sparrow search algorithm (SSA) holds advantages over traditional optimization algorithms in several aspects, such as no need for prior knowledge, fewer parameters, fast convergence, and high scalability. However, the algorithm still faces some challenges, such as the tendency to become trapped in the local optimum and the imbalance between global search ability and local search ability. Therefore, on the basis of SSA, this study examined the Levy flight strategy, sine search strategy, and step size factor adjustment strategy to improve it. This algorithm, improved by three strategies, is called the improved sparrow search algorithm (ISSA). Then, the ISSA-LSTM model was established. Furthermore, considering the limitations of SSA in dealing with multi-objective problems, the fast non-dominated sorting genetic algorithm (NSGAII) was introduced, and the ISSA-NSGAII model was established. Finally, experimental validation was performed using real blast furnace operation data, which demonstrated the proposed algorithm’s superiority in parameter optimization for the LSTM model and prediction for real industrial data.
更多
查看译文
关键词
LSTM,sparrow search algorithm,levy flight strategy,NSGAII,blast furnace ironmaking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要