High-precision chemical quantum sensing in flowing monodisperse microdroplets

Adrisha Sarkar, Zachary Jones, Madhur Parashar,Emanuel Druga, Amala Akkiraju, Sophie Conti, Pranav Krishnamoorthi, Srisai Nachuri, Parker Aman, Mohammad Hashemi,Nicholas Nunn,Marco Torelli,Benjamin Gilbert,Kevin R. Wilson,Olga Shenderova, Deepti Tanjore,Ashok Ajoy

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
We report on a novel flow-based method for high-precision chemical detection that integrates quantum sensing with droplet microfluidics. We deploy nanodiamond particles hosting fluorescent nitrogen vacancy defects as quantum sensors in flowing, monodisperse, picoliter-volume microdroplets containing analyte molecules. ND motion within these microcompartments facilitates close sensor-analyte interaction and mitigates particle heterogeneity. Microdroplet flow rates are rapid (upto 4cm/s) and with minimal drift. Pairing this controlled flow with microwave control of NV electronic spins, we introduce a new noise-suppressed mode of Optically Detected Magnetic Resonance that is sensitive to chemical analytes while resilient against experimental variations, achieving detection of analyte-induced signals at an unprecedented level of a few hundredths of a percent of the ND fluorescence. We demonstrate its application to detecting paramagnetic ions in droplets with simultaneously low limit-of-detection and low analyte volumes, in a manner significantly better than existing technologies. This is combined with exceptional measurement stability over >103s and across hundreds of thousands of droplets, while utilizing minimal sensor volumes and incurring low ND costs (<$0.70 for an hour of operation). Additionally, we demonstrate using these droplets as micro-confinement chambers by co-encapsulating ND quantum sensors with analytes, including single cells. This versatility suggests wide-ranging applications, like single-cell metabolomics and real-time intracellular measurements in bioreactors. Our work paves the way for portable, high-sensitivity, amplification-free, chemical assays with high throughput; introduces a new chemical imaging tool for probing chemical reactions in microenvironments; and establishes the foundation for developing movable, arrayed quantum sensors through droplet microfluidics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要