Red light mitigates Cd toxicity in Egeria densa by restricting Cd accumulation and modulating antioxidant defense system

Shanwei Wang,Wei Xing,Wei Li,Zuoming Xie, Yuan Xiao,Wenmin Huang

Plant Physiology and Biochemistry(2024)

引用 0|浏览0
暂无评分
摘要
Controlling light qualities have been acknowledged as an effective method to enhance the efficiency of phytoremediation, as light has a significant impact on plant growth. This study examined the effects of light qualities on cadmium (Cd) tolerance in aquatic plant Egeria densa using a combination of biochemical and transcriptomic approaches. The study revealed that E. densa exhibits higher resistance to Cd toxicity under red light (R) compared to blue light (B), as evidenced by a significant decrease in photosynthetic inhibition and damage to organelle ultrastructure. After Cd exposure, there was a significantly reduced Cd accumulation and enhanced levels of both glutathione reductase (GR) activity and glutathione (GSH), along with an increase in jasmonic acid (JA) in R- grown E. densa compared to B. Transcriptional analysis revealed that R caused an up-regulation of Cd transporter genes such as ABCG (G-type ATP-binding cassette transporter), ABCC (C-type ATP-binding cassette transporter), and CAX2 (Cation/H+ exchanger 2), while down-regulated the expression of HIPP26 (Heavy metal-associated isoprenylated plant protein 26), resulting in reduced Cd uptake and enhanced Cd exportation and sequestration into vacuoles. Moreover, the expression of genes involved in phytochromes and JA synthesis was up-regulated in Cd treated E. densa under R. In summary, the results suggest that R could limit Cd accumulation and improve antioxidant defense to mitigate Cd toxicity in E. densa, which might be attributed to the enhanced JA and phytochromes. This study provides a foundation for using light control methods with aquatic macrophytes to remediate heavy metal contamination in aquatic systems.
更多
查看译文
关键词
Cadmium,Egeria densa,Light quality,Phytoremediation,Transporters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要