Classical molecular dynamics simulation identifies catechingallate as a promising antiviral polyphenol against MPOX palmitoylated surface protein.

Computational biology and chemistry(2024)

引用 0|浏览0
暂无评分
摘要
Cumulative global prevalence of the emergent monkeypox (MPX) infection in the non-endemic countries has been professed as a global public health predicament. Lack of effective MPX-specific treatments sets the baseline for designing the current study. This research work uncovers the effective use of known antiviral polyphenols against MPX viral infection, and recognises their mode of interaction with the target F13 protein, that plays crucial role in formation of enveloped virions. Herein, we have employed state-of-the-art machine learning based AlphaFold2 to predict the three-dimensional structure of F13 followed by molecular docking and all-atoms molecular dynamics (MD) simulations to investigate the differential mode of F13-polyphenol interactions. Our extensive computational approach identifies six potent polyphenols Rutin, Epicatechingallate, Catechingallate, Quercitrin, Isoquecitrin and Hyperoside exhibiting higher binding affinity towards F13, buried inside a positively charged binding groove. Intermolecular contact analysis of the docked and MD simulated complexes divulges three important residues Asp134, Ser137 and Ser321 that are observed to be involved in ligand binding through hydrogen bonds. Our findings suggest that ligand binding induces minor conformational changes in F13 to affect the conformation of the binding site. Concomitantly, essential dynamics of the six-MD simulated complexes reveals Catechin gallate, a known antiviral agent as a promising polyphenol targeting F13 protein, dominated with a dense network of hydrophobic contacts. However, assessment of biological activities of these polyphenols need to be confirmed through in vitro and in vivo assays, which may pave the way for development of new novel antiviral drugs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要