ReliK: A Reliability Measure for Knowledge Graph Embeddings

WWW 2024(2024)

Cited 0|Views20
No score
Abstract
Can we assess a priori how well a knowledge graph embedding will perform on a specific downstream task and in a specific part of the knowledge graph? Knowledge graph embeddings (KGEs) represent entities (e.g., "da Vinci," "Mona Lisa") and relationships (e.g., "painted") of a knowledge graph (KG) as vectors. KGEs are generated by optimizing an embedding score, which assesses whether a triple (e.g., "da Vinci," "painted," "Mona Lisa") exists in the graph. KGEs have been proven effective in a variety of web-related downstream tasks, including, for instance, predicting relationships among entities. However, the problem of anticipating the performance of a given KGE in a certain downstream task and locally to a specific individual triple, has not been tackled so far. In this paper, we fill this gap with ReliK, a Reliability measure for KGEs. ReliK relies solely on KGE embedding scores, is task- and KGE-agnostic, and requires no further KGE training. As such, it is particularly appealing for semantic web applications which call for testing multiple KGE methods on various parts of the KG and on each individual downstream task. Through extensive experiments, we attest that ReliK correlates well with both common downstream tasks, such as tail or relation prediction and triple classification, as well as advanced downstream tasks, such as rule mining and question answering, while preserving locality.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined