Degradation of rhodamine B dye under visible and solar light on zinc oxide and nickel-doped zinc oxide thin films

Optical Materials(2024)

引用 0|浏览1
暂无评分
摘要
The kinetic investigation of rhodamine B dye's photocatalytic degradation, chosen as a model pollutant, was conducted at room temperature using Zinc oxide (ZnO) and nickel-doped zinc oxide (Zn0.97Ni0.03O) photocatalysts synthesized through the spray pyrolysis method. XRD analysis confirmed the formation of hexagonal ZnO and Zn0.97Ni0.03O films, with crystallite sizes ranging from 19 to 29 nm and varying in mean average grain size from 72 nm to 88 nm. The surface morphology of the Ni-doped ZnO films was influenced by nickel doping, observed through SEM and TEM micrographs, revealing a dense structure of spherical-shaped crystals. Light transmission and optical band gap energy of the films ranged between specified values, ranging from 3.27 to 3.24 eV. The degradation process was assessed under various conditions, including different light sources (UV lamp and solar irradiation), pH levels, and substrate concentrations. Degradation followed a pseudo-first-order kinetic model, with rate constants (k) and half-life times (t1/2) calculated accordingly. The degradation efficiency of undoped ZnO and ZnO doped with nickel decreased with increasing concentration under UV irradiation from (0.1–0.5 M) under UV irradiation decreased from (34.29–45.02) (49.61–56.61), while under visible light are (40–45.07 %) (58.46–60.24 %), removal rates ranged within specific percentages. The porous Zn0.97Ni0.03O synthesized at 0.5 M exhibited the highest photocatalytic efficiency due to its enhanced crystallinity, resulting in degradation rates of 9.22 and 11.22 × 10−3 min−1 and half-life times of 75.18 and 61.77 min at 90 min specified for both UV and solar light irradiations, respectively. Acidification of the reaction medium accelerated the photocatalytic degradation kinetics, while alkalization slowed it down. These findings mark a significant advancement in the utilization of oxide semiconductors for water pollutant degradation under natural sunlight.
更多
查看译文
关键词
Zn0.97Ni0.01O,Rhodamine B,Heterogeneous photocatalysis,Solar irradiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要