Generalized Entanglement Capacity of de Sitter Space

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Near horizons, quantum fields of low spin exhibit densities of states that behave asymptotically like 1+1 dimensional conformal field theories. In effective field theory, imposing some short-distance cutoff, one can compute thermodynamic quantities associated with the horizon, and the leading cutoff sensitivity of the heat capacity is found to equal to the leading cutoff sensitivity of the entropy. One can also compute contributions to the thermodynamic quantities from the gravitational path integral. For the cosmological horizon of the static patch of de Sitter space, a natural conjecture for the relevant heat capacity is shown to equal the Bekenstein-Hawking entropy. These observations allow us to extend the well-known notion of the generalized entropy to a generalized heat capacity for the static patch of dS. The finiteness of the entropy and the nonvanishing of the generalized heat capacity suggests it is useful to think about dS as a state in a finite dimensional quantum gravity model that is not maximally uncertain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要