Defect-Healed Carbon Nanomembranes for Enhanced Salt Separation: Scalable Synthesis and Performance.

ACS applied materials & interfaces(2024)

引用 0|浏览0
暂无评分
摘要
Carbon nanomembranes (CNMs), with a high density of subnanometer channels, enable superior salt separation performance compared to conventional membranes. However, defects that occur during the synthesis and transfer processes impede their technical realization on a macroscopic scale. Here, we introduce a practical and scalable interfacial polymerization method to effectively heal defects while preserving the subnanometer pores within CNMs. The defect-healed freestanding CNMs show an exceptional performance in forward osmosis (FO), achieving a water flux of 105 L m-2 h-1 and a specific reverse salt flux of 0.1 g L-1 when measured with 1 M NaCl as draw solution. This water flux is 10 times higher than that of commercially available FO membranes, and the reverse salt flux is 70% lower. Through successful implementation of the defect-healing method and support optimization, we demonstrate the synthesis of fully functional, centimeter-scale CNM-based composite membranes showing high water permeance and a high salt rejection. Our defect-healing method presents a promising pathway to overcome limitations in CNM synthesis, advancing their potential for practical salt separation applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要