Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries

Chi Luo, Haoyun Lei, Yiyang Xiao, Xiaoxin Nie,Yuhang Li,Qian Wang,Wenlong Cai, Chunlong Dai,Meng Yao,Yun Zhang,Du Yuan

Energy Materials(2024)

引用 0|浏览3
暂无评分
摘要
Safety issues of energy storage devices in daily life are receiving growing attention, together with resources and environmental concerns. Aqueous zinc ion batteries (AZIBs) have emerged as promising alternatives for extensive energy storage due to their ultra-high capacity, safety, and eco-friendliness. Manganese-based compounds are key to the functioning of AZIBs as the cathode materials thanks to their high operating voltage, substantial charge storage capacity, and eco-friendly characteristics. Despite these advantages, the development of high-performance Mn-based cathodes still faces the critical challenges of structural instability, manganese dissolution, and the relatively low conductivity. Primarily, the charge storage mechanism of manganese-based AZIBs is complex and subject to debate. In view of the above, this review focuses on the mostly investigated MnO2-based cathodes and comprehensively outlines the charge storage mechanisms of MnO2-based AZIBs. Current optimization strategies are systematically summarized and discussed. At last, the perspectives on elucidating advancing MnO2 cathodes are provided from the mechanistic, synthetic, and application-oriented aspects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要