Multi-step FRET systems based on discrete supramolecular assemblies

COMMUNICATIONS CHEMISTRY(2024)

引用 0|浏览4
暂无评分
摘要
Fluorescence resonance energy transfer (FRET) from the excited state of the donor to the ground state of the acceptor is one of the most important fluorescence mechanisms and has wide applications in light-harvesting systems, light-mediated therapy, bioimaging, optoelectronic devices, and information security fields. The phenomenon of sequential energy transfer in natural photosynthetic systems provides great inspiration for scientists to make full use of light energy. In recent years, discrete supramolecular assemblies (DSAs) have been successively constructed to incorporate donor and multiple acceptors, and to achieve multi-step FRET between them. This perspective describes recent advances in the fabrication and application of DSAs with multi-step FRET. These DSAs are categorized based on the non-covalent scaffolds, such as amphiphilic nanoparticles, host-guest assemblies, metal-coordination scaffolds, and biomolecular scaffolds. This perspective will also outline opportunities and future challenges in this research area. Fluorescence resonance energy transfer (FRET) is one of the most important fluorescence mechanisms, with multi-step FRET systems enabling sequential energy transfer as seen in natural photosynthetic systems. Here, the authors review recent progress in exploiting discrete supramolecular assemblies to achieve multi-step FRET between donors and multiple acceptors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要