ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference.

International Conference on Architectural Support for Programming Languages and Operating Systems(2024)

Cited 0|Views30
No score
Abstract
Zero knowledge Neural Networks draw increasing attention for guaranteeing computation integrity and privacy of neural networks (NNs) based on zero-knowledge Succinct Non-interactive ARgument of Knowledge (zkSNARK) security scheme. However, the performance of zkSNARK NNs is far from optimal due to the million-scale circuit computation with heavy scalar-level dependency. In this paper, we propose a type-based optimizing framework for efficient zero-knowledge NN inference, namely ZENO (ZEro knowledge Neural network Optimizer). We first introduce ZENO language construct to maintain high-level semantics and the type information (e.g. , privacy and tensor) for allowing more aggressive optimizations. We then propose privacy-type driven and tensor-type driven optimizations to further optimize the generated zkSNARK circuit. Finally, we design a set of NN-centric system optimizations to further accelerate zkSNARK NNs. Experimental results show that ZENO achieves up to 8.5× end-to-end speedup than state-of-the-art zkSNARK NNs. We reduce proof time for VGG16 from 6 minutes to 48 seconds, which makes zkSNARK NNs practical.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined