Applications of charcoal, activated charcoal, and biochar in aquaculture – A review

Science of The Total Environment(2024)

引用 0|浏览2
暂无评分
摘要
Environmental pollution and poor feed quality pose potential threats to aquatic organisms and human health, representing challenges for the aquaculture industry. In light of the rising demand for aquatic organisms, there is an urgent need to improve aquacultural production and protect the products from contamination. Char, a carbonaceous material derived through pyrolysis of organic carbon-rich biomass, has proven advantages in soil, air, and water remediation. While char's performance and the associated physicochemical characteristics depend strongly on the pyrolysis temperature, residence time, and feedstock type, char generally shows advantages in pollutant removal from the environment and livestock. This enables it to enhance the health and growth performance of livestock. Given the growing attention to char application in aquaculture in recent years, this review summarises major studies on three applications: aquacultural water treatment, sediment remediation, and char-feed supplement. Most of these studies have demonstrated char's positive effects on pollutant removal from organisms and aquacultural environments. Moreover, adopting char as fish feed can improve fish growth performance and the condition of their intestinal villi. However, due to insufficient literature, further investigation is needed into the mechanistic aspects of pollutants removal in aquatic organisms by char as a feed additive, such as the transportation of char inside aquatic organisms, the positive and negative effects of char on these products, and how char alters the gut microbiota community of these products. This paper presents an overview of the current application of char in aquaculture and highlights the research areas that require further investigation to enrich future studies.
更多
查看译文
关键词
Carbon-rich solid,Feed supplement,Heavy metals,Organic pollutants,Gastrointestinal microbial community
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要