Recent advances in the synthesis of single-stranded DNA in vitro

BIOTECHNOLOGY JOURNAL(2024)

引用 0|浏览4
暂无评分
摘要
Single-stranded DNA (ssDNA) is the foundation of modern biology, with wide applications in gene editing, sequencing, DNA information storage, and materials science. However, synthesizing ssDNA with high efficiency, high throughput, and low error rate in vitro remains a major challenge. Various methods have been developed for ssDNA synthesis, and some significant results have been achieved. In this review, six main methods were introduced, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. The advantages and limitations of each method were compared, as well as illustrate their representative achievements and applications. Especially, rolling circle amplification has received significant attention, including ssDNA synthesis, assembly, and application based on recent work. Finally, the future challenges and opportunities of ssDNA synthesis were summarized and discussed. Envisioning the development of new methods and significant progress will be made in the near future with the efforts of scientists around the world. Single-stranded DNA (ssDNA) is the foundation of synthetic biology, which promotes the third biotechnological revolution, while synthesizing ssDNA with high efficiency and low error rate remains major challenges. Six representative achievements and approaches were concluded and compared, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. Envisioning comprehensive viewpoints on ssDNA synthesis and providing necessary guidance for future research. image
更多
查看译文
关键词
DNA nanotechnology,rolling circle amplification,single-stranded DNA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要