The role of stacking fault tetrahedra on void swelling in irradiated copper

COMMUNICATIONS MATERIALS(2024)

引用 0|浏览4
暂无评分
摘要
A long-standing and critical issue in the field of irradiated structural materials is that void swelling is significantly higher in face-centered cubic-structured (fcc) materials (1% dpa-1) as compared to that of body-centered cubic-structured (bcc) materials (0.2% dpa-1). Despite extensive research in this area, the underlying mechanism of the difference in swelling resistance between these two types of materials is not yet fully understood. Here, by combining atomistic simulations and STEM imaging, we find stacking fault tetrahedra (SFTs) are the primary cause of the high swelling rate in pure fcc copper. We reveal that SFTs in fcc copper are not neutral sinks, different from the conventional knowledge. On the contrary, they are highly biased compared to other types of sinks because of the SFT-point defect interaction mechanism. SFTs show strong absorption of mobile self-interstitial atoms (SIAs) from the faces and vertices, and weak absorption of mobile vacancies from the edges. We compare the predicted swelling rates with experimental findings under varying conditions, demonstrating the distinct contributions of each type of sink. These findings will contribute to understanding the swelling of irradiated structural materials, which may facilitate the design of materials with high swelling resistance. Irradiation-induced void swelling is known to be higher in metals with an fcc structure compared to bcc, though the reason behind this is unclear. Here, by combining simulations and STEM imaging, stacking fault tetrahedra are found to be the cause of a high swelling rate in fcc copper.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要