Transistors with ferroelectric ZrXAl1−XOY crystallized by ZnO growth for multi-level memory and neuromorphic computing

Communications Materials(2024)

引用 0|浏览2
暂无评分
摘要
Ferroelectric (FE) field-effect transistors are interesting for their non-destructive readout characteristic and energy efficiency but are difficult to integrate on silicon platforms. Here, FE ZrXAl1−XOY (ZAO) is demonstrated by compressive strain in contact with ZnO. The metal-ferroelectric-semiconductor-metal capacitor exhibits a substantial remnant polarization of 15.2 µC cm−2, along with a bowknot-like anti-clockwise hysteresis in the capacitance curves. The FE-ZAO gated ZnO thin-film transistor presents a large memory window (3.84 V), low subthreshold swing (55 mV dec−1), high ION/IOFF ratio (≈108), and low off-state current (≈1 pA). The grazing incidence X-ray diffraction and scanning transmission electron microscopy analyses reveal the ferroelectric rhombohedral phase (space group R3m) in the nanocrystal ZAO, containing an angle of ≈71.7° between the [111] and [11-1] directions with d111-spacing of 3.037 Å and d11-1-spacing of 2.927 Å. Finally, the memory and neuromorphic applications are analyzed by demonstrating multi-level memory and synaptic weight performance with a high learning accuracy of 91.82%. Ferroelectric field-effect transistors are interesting for their non-destructive readout characteristic and energy efficiency but are difficult to integrate on silicon platforms. Here, ferroelectricity in ZrXAl1−XOY generated by compressive strain in contact with ZnO is demonstrated, showing promising multi-level memory and synaptic weight performance for neuromorphic computing devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要