Generation and Propagation of Flexoelectricity-Induced Solitons in Nematic Liquid Crystals.

ACS nano(2024)

引用 0|浏览0
暂无评分
摘要
Solitons in nematic liquid crystals facilitate the rapid transport and sensing in microfluidic systems. Little is known about the elementary conditions needed to create solitons in nematic materials. In this study, we apply a combination of theory, computational simulations, and experiments to examine the formation and propagation of solitary waves, or "solitons", in nematic liquid crystals under the influence of an alternating current (AC) electric field. We find that these solitary waves exhibit "butterfly"-like or "bullet"-like structures that travel in the direction perpendicular to the applied electric field. Such structures propagate over long distances without losing their initial shape. The theoretical framework adopted here helps identify several key factors leading to the formation of solitons in the absence of electrostatic interactions. These factors include surface irregularities, flexoelectric polarization, unequal elastic constants, and negative anisotropic dielectric permittivity. The results of simulations are shown to be in good agreement with our own experimental observations, serving to establish the validity of the theoretical concepts and ideas advanced in this work.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要