Nanochannel Stability of Chemically Converted Graphene Oxide Membranes

SMALL(2024)

引用 0|浏览0
暂无评分
摘要
Chemically converted graphene oxide laminate membranes, which exhibit stable interlayered nanochannels in aqueous environments, are receiving increasing attention owing to their potential for selective water and ion permeation. However, how the molecular properties of conversion agents influence the stabilization of nanochannels and how effectively nanochannels are stabilized have rarely been studied. In this study, mono-, di-, and tri-saccharide molecules of glucose (Glu), maltose (Glu2), and maltotriose (Glu3) are utilized, respectively, to chemically modify graphene oxide (GO). The aim is to create nanochannels with different levels of stability and investigate how these functional conversion agents affect the separation performance. The effects of the property differences between different conversion agents on nanochannel stabilization are demonstrated. An agent with efficient chemical reduction of GO and limited intercalation in the resulting nanochannel ensures satisfactory nanochannel stability during desalination. The stabilized membrane nanochannel exhibits a permeance of 0.69 L m-2 h-1 bar-1 and excellent Na2SO4 rejection of 96.42%. Furthermore, this optimized membrane nanochannel demonstrates enhanced stability under varying external conditions compared to the original GO. This study provides useful information for the design of chemical conversion agents for GO nanochannel stabilization and the development of nanochannel membranes for precise separation. The effects of property difference between different conversion agents on the nanochannel stabilization are evidenced. The agent with efficient chemical reduction of GO and limited intercalation effect in the resulting nanochannel ensures satisfactory nanochannel stability under desalination process. The optimal membrane nanochannel possess significantly improved stability under various changing conditions as compared to the original GO. image
更多
查看译文
关键词
chemical conversion,desalination,graphene oxide,nanochannel membrane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要