High-performance heterometallic photocatalysts afforded by polyoxometalate synthons for efficient H2 production

Journal of Colloid and Interface Science(2024)

引用 0|浏览6
暂无评分
摘要
MoS2-based materials have emerged as photoelectric semiconductors characterized by a narrow band gap, high capacity for absorbing visible light, and reduced H2 adsorption energy comparable to Pt. These attributes render them appealing for application in photocatalytic hydrogen production. Despite these advantages, the widespread adoption of MoS2-based materials remains hindered by challenges associated with limited exposure to active sites and suboptimal catalytic hydrogen production efficiency. To address these issues, we have designed and synthesized a new class of highly dispersed bimetallic/trimetallic sulfide materials. This was achieved by developing polyoxometalate synthons containing Ni-Mo elements, which were subsequently reacted with thiourea and CdS. The resulting Ni3S2-MoS2 and Ni3S2-MoS2-CdS materials achieve photocatalytic hydrogen production rates of 2770 and 2873 μmol g–1h−1, respectively. Notably, the rate of 2873 μmol g–1h−1 for Ni3S2-MoS2-CdS surpassed triple (3.23 times) the performance of CdS and nearly sextuple (5.77 times) that of single MoS2. These materials outperformed the majority of MoS2-based photocatalysts. Overall, this study introduces a straightforward methodology for synthesizing bimetallic/trimetallic sulfides with enhanced photocatalytic H2 evolution performance. Our findings underscore the potential of transition metal sulfide semiconductors in the realm of photocatalysis and pave the way for the development of more sustainable energy production systems.
更多
查看译文
关键词
Hydrogen energy,Heterometal,Photocatalyst,Polyoxometalate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要