EpiCarousel: memory- and time-efficient identification of metacells for atlas-level single-cell chromatin accessibility data

Sijie Li, Yuxi Li, Yu Sun, Yaru Li,Xiaoyang Chen, Songming Tang,Shengquan Chen

BIOINFORMATICS(2024)

引用 0|浏览0
暂无评分
摘要
Recent technical advancements in single-cell chromatin accessibility sequencing (scCAS) have brought new insights to the characterization of epigenetic heterogeneity. As single-cell genomics experiments scale up to hundreds of thousands of cells, the demand for computational resources for downstream analysis grows intractably large and exceeds the capabilities of most researchers. Here, we propose EpiCarousel, a tailored Python package based on lazy loading, parallel processing, and community detection for memory- and time-efficient identification of metacells, i.e. the emergence of homogenous cells, in large-scale scCAS data. Through comprehensive experiments on five datasets of various protocols, sample sizes, dimensions, number of cell types, and degrees of cell-type imbalance, EpiCarousel outperformed baseline methods in systematic evaluation of memory usage, computational time, and multiple downstream analyses including cell type identification. Moreover, EpiCarousel executes preprocessing and downstream cell clustering on the atlas-level dataset with 707 043 cells and 1 154 611 peaks within 2 h consuming <75 GB of RAM and provides superior performance for characterizing cell heterogeneity than state-of-the-art methods. Availability and implementation: The EpiCarousel software is well-documented and freely available at https://github.com/biox-nku/epicarousel. It can be seamlessly interoperated with extensive scCAS analysis toolkits.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要