Faster Algorithms for Fair Max-Min Diversification in ℝ^d

Yash Kurkure, Miles Shamo, Joseph Wiseman,Sainyam Galhotra,Stavros Sintos

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
The task of extracting a diverse subset from a dataset, often referred to as maximum diversification, plays a pivotal role in various real-world applications that have far-reaching consequences. In this work, we delve into the realm of fairness-aware data subset selection, specifically focusing on the problem of selecting a diverse set of size k from a large collection of n data points (FairDiv). The FairDiv problem is well-studied in the data management and theory community. In this work, we develop the first constant approximation algorithm for FairDiv that runs in near-linear time using only linear space. In contrast, all previously known constant approximation algorithms run in super-linear time (with respect to n or k) and use super-linear space. Our approach achieves this efficiency by employing a novel combination of the Multiplicative Weight Update method and advanced geometric data structures to implicitly and approximately solve a linear program. Furthermore, we improve the efficiency of our techniques by constructing a coreset. Using our coreset, we also propose the first efficient streaming algorithm for the FairDiv problem whose efficiency does not depend on the distribution of data points. Empirical evaluation on million-sized datasets demonstrates that our algorithm achieves the best diversity within a minute. All prior techniques are either highly inefficient or do not generate a good solution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要