A pressure-sensitive rheological origin of high friction angles of granular matter observed in NASA-MGM project

Xiaohui Cheng, Shize Xiao, Sen Yang, Naifeng Zhao,Alex Sixie Cao

Chinese Physics B(2024)

引用 0|浏览3
暂无评分
摘要
Abstract An abnormally high peak friction angle of Ottawa sand was observed in (National Aeronautics and Space Administration) NASA- (Mechanics of Granular Materials) MGM tests in microgravity conditions on the space shuttle. Previous investigations have been unsuccessful in providing a constitutive insight into this behavior of granular materials under extremely low effective stress conditions. Here, a recently proposed unified constitutive model for transient rheological behavior of sand and other granular materials is adopted for the analytical assessment of high peak friction angles. For the first time, this long-eluded behavior of sand is attributed to a hidden rheological transition mechanism, that is not only rate-sensitive, but also pressure- sensitive. The NASA-MGM microgravity conditions show that shear-tests of sand can be performed under abnormally low confining stress conditions. The pressure-sensitive behavior of granular shearing that is previously ignored is studied based on the μ(I) rheology and its variations. Comparisons between the model and the NASA microgravity tests demonstrate a high degree of agreement. The research is highly valid for pressure-sensitive and rate-dependent problems that occur during earthquakes, landslides, and space exploration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要