Elasmobranchs Exhibit Species-Specific Epidermal Microbiomes Guided by Denticle Topography

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
Elasmobranch epidermal microbiomes are species-specific, yet microbial assembly and retainment drivers are mainly unknown. The contribution of host-derived factors in recruiting an associated microbiome is essential for understanding host-microbe interactions. Here, we focus on the physical aspect of the host skin in structuring microbial communities. Each species of elasmobranch exhibits unique denticle morphology, and we investigate whether microbial communities and functional pathways are correlated with the morphological features or follow the phylogeny of the three species. We extracted and sequenced the DNA from the epidermal microbial communities of three captive shark species: Horn ( Heterodontus francisci ), Leopard ( Triakis semifasciata ), and Swell shark ( Cephaloscyllium ventriosum ) and use electron microscopy to measure the dermal denticle features of each species. Our results outline species-specific microbial communities, as microbiome compositions vary at the phyla level; C. ventriosum hosted a higher relative abundance of Pseudomonadota and Bacillota, while H. francisci were associated with a higher prevalence of Euryarchaeota and Aquificae, and Bacteroidota and Crenarchaeota were ubiquitous with T. semifasciata . Functional pathways performed by each species' respective microbiome were species-specific metabolic. Microbial genes associated with aminosugars and electron-accepting reactions were correlated with the distance between dermal denticles, whereas desiccation stress genes were only present when the dermal denticle overlapped. Microbial genes associated with Pyrimidines, chemotaxis and virulence followed the shark phylogeny. Microbial genera display associations that resemble host evolutionary lineage, while others had linear relationships with interdenticle distance. Therefore, denticle morphology was a selective influence for some microbes and functions in the microbiome contributing to the phylosymbiosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要