Dynamic Reversible Oxidation-Reduction of Iodide Ions for Operationally Stable Perovskite Solar Cells under ISOS-L-3 Protocol

Xiaoyi Lu,Kexuan Sun, Yaohua Wang,Chang Liu, Yuanyuan Meng, Xiting Lang,Chuanxiao Xiao, Ruijia Tian, Zhenhua Song, Zewei Zhu, Ming Yang, Yang Bai,Ziyi Ge

ADVANCED MATERIALS(2024)

引用 0|浏览2
暂无评分
摘要
Despite rapid advancements in the photovoltaic efficiencies of perovskite solar cells (PSCs), their operational stability remains a significant challenge for commercialization. This instability mainly arises from light-induced halide ion migration and subsequent oxidation into iodine (I2). The situation is exacerbated when considering the heat effects at elevated temperatures, leading to the volatilization of I2 and resulting in irreversible device degradation. Mercaptoethylammonium iodide (ESAI) is thus incorporated into perovskite as an additive to inhibit the oxidation of iodide anion (I-) and the light-induced degradation pathway of FAPbI3 -> FAI+PbI2. Additionally, the formation of a thiol-disulfide/I--I2 redox pair within the perovskite film provides a dynamic mechanism for the continuous reduction of I2 under light and thermal stresses, facilitating the healing of iodine-induced degradations. This approach significantly enhances the operational stability of PSCs. Under the ISOS-L-3 testing protocol (maximum power point (MPP) tracking in an environment with relative humidity of approximate to 50% at approximate to 65 degrees C), the treated PSCs maintain 97% of their original power conversion efficieney (PCE) after 300 h of aging. In contrast, control devices exhibit almost complete degradation, primarily due to rapid thermal-induced I2 volatilization. These results demonstrate a promising strategy to overcome critical stability challenges in PSCs, particularly in scenarios involving thermal effects. Mercaptoethylammonium iodide (ESAI) is incorporated into perovskite as an additive to inhibit the oxidation of I-, which provides a dynamic mechanism for the continuous reduction of I2 under light and thermal stresses, facilitating the healing of iodine-induced degradations. Under ISOS-L-3 conditions, the device with ESAI retained 97% of the original power conversion efficiency (PCE) after 300 h. image
更多
查看译文
关键词
halide migration,heat-light stabiltiy,Iodine reduction,operational stability,perovskite solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要