Does seasonal variation affect the neuroimmune system? A retrospective [11C]PBR28 PET study in healthy individuals

Waleed Ibrahim, Jeonghyun An,Yanghong Yang,Kelly P. Cosgrove,David Matuskey

Neuroscience Letters(2024)

引用 0|浏览0
暂无评分
摘要
Introduction The neuroimmune system performs a wide range of functions in the brain and the central nervous system. The microglial translocator protein (TSPO) has an established role as a cell marker in identification of the neuroimmune system. Previously, human studies have shown TSPO differences in neuropsychiatric disorders. Seasonal variability has also been demonstrated in multiple systems of healthy individuals. Therefore, in this study, we attempt to understand whether seasonal changes affect brain TSPO levels using [11C]PBR28 positron emission tomography (PET) imaging. Methods 46 healthy subjects (mean age ± SD = 32.5 ± 10); sex (M/F) = 32/14)) underwent PET imaging with [11C]PBR28 in a retrospectively conducted analysis. All PET scans were performed on the HRRT scanner. Volume of distribution (VT) values were generated for cortical and subcortical regions and the cerebellum. Spring/summer months were defined as March to August while fall/winter months were defined as September to February and were compared through 2-tailed t-tests (SciPy library v.1.10.1 and Pinguoin library on Python v.3.8.8). Average daylight hours and temperature in New Haven, CT were obtained online (www.wunderground.com) and compared to VT with Spearman’s correlations. Results There were no significant differences observed between the TSPO levels of spring/summer and fall/winter months in the brain (t = 0.52, p = 0.61). Additional analysis on all individual brain regions also indicated non-significance. Likewise, no significant correlations were found between TSPO levels in the whole brain and brain regions against daylight hours (ρ= 0.05, p = 0.74), temperature (ρ = 0.04, p = 0.81), or month (ρ = 0.08, p = 0.60). Controlling TSPO gene polymorphisms and other variables had no significant effect on the outcome. Conclusion To the best of our knowledge, this is the first human study to investigate seasonal changes in TSPO expression. Our results can be interpreted as the lack of seasonal variability in the neuroimmune system, but important limitations include high interindividual variability, test–retest variability, specificity of the tracer, and a limited sample size. Limitations notwithstanding, our results conclude that TSPO levels in the brain are not impacted by light and temperature changes in different seasons.
更多
查看译文
关键词
TSPO,Neuroinflammation,Translocator-protein,[11C]PBR28,Season,PET
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要