Enhancing Efficiency of Large-Area Wide-Bandgap Perovskite Solar Modules with Spontaneously Formed Self-Assembled Monolayer Interfaces.

Mingyang Gao,Xuehui Xu, Hong Tian,Peng Ran,Ziyan Jia,Yirong Su,Juan Hui, Xianjin Gan, Shuo Zhao,Haiming Zhu,Hui Lv,Yang Michael Yang

The journal of physical chemistry letters(2024)

引用 0|浏览0
暂无评分
摘要
Wide-bandgap (WBG) perovskites play a crucial role in perovskite-based tandem cells. Despite recent advances using self-assembled monolayers (SAMs) to facilitate efficiency breakthroughs, achieving precise control over the deposition of such ultrathin layers remains a significant challenge for large-scale fabrication of WBG perovskite and, consequently, for the tandem modules. To address these challenges, we propose a facile method that integrates MeO-2PACz and Me-4PACz in optimal proportions (Mixed SAMs) into the perovskite precursor solution, enabling the simultaneous codeposition of WBG perovskite and SAMs. This technique promotes the spontaneous formation of charge-selective contacts while reducing defect densities by coordinating phosphonic acid groups with the unbonded Pb2+ ions at the bottom interface. The resulting WBG perovskite solar cells (PSCs) demonstrated a power conversion efficiency of 19.31% for small-area devices (0.0585 cm2) and 17.63% for large-area modules (19.34 cm2), highlighting the potential of this codeposition strategy for fabricating high-performance, large-area WBG PSCs with enhanced reproducibility. These findings offer valuable insights for advancing WBG PSCs and the scalable fabrication of modules.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要