A swimming bacterium in a two-fluid model of a polymer solution

Sabarish V. Narayanan,Donald L. Koch,Sarah Hormozi

arxiv(2024)

引用 0|浏览4
暂无评分
摘要
We analyse the motion of a flagellated bacterium in a two-fluid medium using slender body theory. The two-fluid model is useful for describing a body moving through a complex fluid with a microstructure whose length scale is comparable to the characteristic scale of the body. This is true for bacterial motion in biological fluids (entangled polymer solutions), where the entanglement results in a porous microstructure with typical pore diameters comparable to or larger than the flagellar bundle diameter but smaller than the diameter of the bacterial head. Thus the polymer and solvent satisfy different boundary conditions on the flagellar bundle and move with different velocities close to it. This gives rise to a screening length L_B within which the fluids exchange momentum and the relative velocity between the two fluids decays. In this work, both the solvent and polymer of the two-fluid medium are modeled as Newtonian fluids with different viscosities μ_s and μ_p (viscosity ratio λ = μ_p/μ_s), thereby capturing the effects solely introduced by the microstructure of the complex fluid. From our calculations, we observe an increased drag anisotropy for a rigid, slender flagellar bundle moving through this two-fluid medium, resulting in an enhanced swimming velocity of the organism. The results are sensitive to the interaction between the bundle and the polymer and we discuss two physical scenarios corresponding to two types of interaction. Our model provides an explanation for the experimentally observed enhancement of swimming velocity of bacteria in entangled polymer solutions and motivates further experimental investigations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要