Exploring Universe acceleration through observational constraints via Hubble parameter reconstruction

Journal of High Energy Astrophysics(2024)

引用 0|浏览1
暂无评分
摘要
In this article, we introduce an innovative parametric representation of the Hubble parameter, providing a model-independent means to explore the dynamics of an accelerating cosmos. The model's parameters are rigorously constrained through a Markov Chain Monte Carlo (MCMC) approach, leveraging a comprehensive dataset consisting of 31 data points from cosmic chronometers (CC), 1701 updated observations of Pantheon supernovae type Ia (SNeIa), and 6 data points from baryonic acoustic oscillations (BAO). Our analysis delves into the behavior of various cosmological parameters within the model, including the transition from a decelerating phase to an accelerating one, as well as the density parameters and the equation of state (EoS) parameter. The outcomes of our investigation reveal that the equation of state parameter aligns with characteristics reminiscent of the phantom model, supporting the prevailing understanding of our universe's current state of acceleration. This research contributes valuable insights into the ongoing cosmic expansion and underscores the utility of our novel parametric approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要