Multi-dimensional cylindrical vector beam (de)multiplexing through cascaded wavelength- and polarization-sensitive metasurfaces.

Optics express(2024)

引用 0|浏览7
暂无评分
摘要
Cylindrical vector beams (CVBs) exhibit great potential for multiplexing communication, owing to their mode orthogonality and compatibility with conventional wavelength multiplexing techniques. However, the practical application of CVB multiplexing communication faces challenges due to the lack of effective spatial polarization manipulation technologies for (de)multiplexing multi-dimensional physical dimensions of CVBs. Herein, we introduce a wavelength- and polarization-sensitive cascaded phase modulation strategy that utilizes multiple coaxial metasurfaces for multi-dimensional modulation of CVBs. By leveraging the spin-dependent phase modulation mechanism, these metasurfaces enable the independent transformation of the two orthogonal polarization components of CVB modes. Combined with the wavelength sensitivity of Fresnel diffraction in progressive phase modulation, this approach establishes a high-dimensional mapping relationship among CVB modes, wavelengths, spatial positions, and Gaussian fundamental modes, thereby facilitating multi-dimensional (de)multiplexing involving CVB modes and wavelengths. As a proof of concept, we theoretically demonstrate a 9-channel multi-dimensional multiplexing system, successfully achieving joint (de)multiplexing of 3 CVB modes (1, 2, and 3) and 3 wavelengths (1550 nm, 1560 nm, and 1570 nm) with a diffraction efficiency exceeding 80%. Additionally, we show the transmission of 16-QAM signals across 9 channels with the bit-error-rates below 10-5. By combining the integrability of metasurfaces with the high-dimensional wavefront manipulation capabilities of multilevel modulation, our strategy can effectively address the diverse demands of different wavelengths and CVB modes in optical communication.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要