Quantifying uncertainties of satellite NO2 superobservations for data assimilation and model evaluation

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Abstract. Satellite observations of tropospheric trace gases and aerosols are evolving rapidly. Recently launched instruments provide increasingly higher spatial resolutions with footprint diameters in the range of 2–8 km, with daily global coverage for polar orbiting satellites or hourly observations from geostationary orbit. Often the modelling system has a lower spatial resolution than the satellites used, with a model grid size in the range of 10–100 km. When the resolution mismatch is not properly bridged, the final analysis based on the satellite data may be degraded. Superobservations are averages of individual observations matching the resolution of the model and are functional to reduce the data load on the assimilation system. In this paper, we discuss the construction of superobservations, their kernels and uncertainty estimates. The methodology is applied to nitrogen dioxide tropospheric column measurements of the TROPOMI instrument on the Sentinel-5P satellite. In particular, the construction of realistic uncertainties for the superobservations is non-trivial and crucial to obtaining close to optimal data assimilation results. We present a detailed methodology to account for the representativity error when satellite observations are missing due to e.g. cloudiness. Furthermore, we account for systematic errors in the retrievals leading to error correlations between nearby individual observations contributing to one superobservation. Correlation information is typically missing in the retrieval products where an error estimate is provided for individual observations. The various contributions to the uncertainty are analysed: from the spectral fitting, the estimate of the stratospheric contribution to the column and the air-mass factor. The method is applied to TROPOMI data but can be generalised to other trace gases such as HCHO, CO, SO2 and other instruments such as OMI, GEMS and TEMPO. The superobservations and uncertainties are tested in the ensemble Kalman filter chemical data assimilation system developed by JAMSTEC. These are shown to improve forecasts compared to thinning or compared to assuming fully correlated or uncorrelated uncertainties within the superobservation. The use of realistic superobservations within model comparisons and data assimilation in this way aids the quantification of air pollution distributions, emissions and their impact on climate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要