Metal Valence State Modulation Strategy to Design Core@shell Hollow Carbon Microspheres@MoSe2/MoOx Multicomponent Composites for Anti‐Corrosion and Microwave Absorption

Small(2024)

引用 0|浏览2
暂无评分
摘要
AbstractThe exploitation of multicomponent composites (MCCs) has become the main pathway for obtaining advanced microwave absorption materials (MAMs). Herein, a metal valence state modulation strategy is proposed to tune the electromagnetic (EM) parameters and improve microwave absorption performances. Core@shell hollow carbon microspheres@MoSe2 and hollow carbon microspheres@MoSe2/MoOx MCCs with various mixed‐valence states content are well‐designed and produced by a simple hydrothermal reaction or/and heat treatment process. The results reveal that the thermal treatment of hollow carbon microspheres@MoSe2 in Ar and Ar/H2 leads to the in situ formation of MoOx and multivalence state, respectively, and the enhanced content of Mo4+ in the designed MCCs greatly boosts their impedance matching characteristics, polarization, and conduction loss capacities, which lead to their evidently improved EM wave absorption properties. Amongst, the as‐prepared hollow carbon microspheres@MoSe2/MoOx MCCs achieve an effective absorption bandwidth of 5.80 GHz under a matching thickness of 1.97 mm and minimum reflection loss of −21.49 dB. Therefore, this work offers a simple and universal method to fabricate core@shell hollow carbon microspheres@MoSe2/MoOx MCCs, and a novel and feasible metal valence state modulation strategy is proposed to develop high‐efficiency MAMs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要