Unraveling the functioning mechanism of fluorine-doping in Mn-based layered oxide cathodes toward enhanced sodium-ion storage performance

Energy Storage Materials(2024)

引用 0|浏览5
暂无评分
摘要
Manganese-based layered oxides with anionic redox activity are considered as one of the most promising cathode candidates for sodium-ion batteries (SIBs) owing to their abundant resources and high theoretical specific capacities. However, the severe Jahn-Teller (J-T) effect of Mn3+ and irreversible lattice oxygen loss result in rapid structural degradation and electrochemical performance deterioration. Herein, the functioning mechanism of F-doping in regulating the local and electronic structures of Mn-based layered oxides is unraveled. The introduction of the more electronegative F ions on one hand breaks the electronic symmetry of the MnO6 octahedra and effectively alleviates the J-T distortion, on the other hand suppresses the Zn ions migration through the strong Zn-F bonds and stabilizes the oxygen redox chemistry and facilitates the Na+ diffusion. The above reaction mechanisms are systematically validated by in-situ/ex-situ analyses and theoretical computations. As a result, the optimum P2-Na0.75Zn0.28Mn0.72O1.93F0.07 cathode demonstrates significantly improved rate capability (178.6 mAh g−1 at 0.1 C with 64.4 mAh g−1 at 10 C) and enhanced cycling durability (83.1% capacity retention over 400 cycles at 3 C) compared to the un-doped P2-Na0.75Zn0.28Mn0.72O2 material. This study clarifies the F-doping mechanism in layered oxides and provides new perspectives for designing high-energy and high-stability cathodes for SIBs.
更多
查看译文
关键词
Sodium-ion batteries,Layered oxide cathodes,Fluorine doping,Anionic redox chemistry,Charge compensation mechanisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要