Resonant Tunnelling and Intersubband Optical Properties of ZnO/ZnMgO Semiconductor Heterostructures: Impact of Doping and Layer Structure Variation

MATERIALS(2024)

引用 0|浏览5
暂无评分
摘要
ZnO-based heterostructures are up-and-coming candidates for terahertz (THz) optoelectronic devices, largely owing to their innate material attributes. The significant ZnO LO-phonon energy plays a pivotal role in mitigating thermally induced LO-phonon scattering, potentially significantly elevating the temperature performance of quantum cascade lasers (QCLs). In this work, we calculate the electronic structure and absorption of ZnO/ZnMgO multiple semiconductor quantum wells (MQWs) and the current density-voltage characteristics of nonpolar m-plane ZnO/ZnMgO double-barrier resonant tunnelling diodes (RTDs). Both MQWs and RTDs are considered here as two building blocks of a QCL. We show how the doping, Mg percentage and layer thickness affect the absorption of MQWs at room temperature. We confirm that in the high doping concentrations regime, a full quantum treatment that includes the depolarisation shift effect must be considered, as it shifts mid-infrared absorption peak energy for several tens of meV. Furthermore, we also focus on the performance of RTDs for various parameter changes and conclude that, to maximise the peak-to-valley ratio (PVR), the optimal doping density of the analysed ZnO/Zn88Mg12O double-barrier RTD should be approximately 10(18) cm(-3), whilst the optimal barrier thickness should be 1.3 nm, with a Mg mole fraction of similar to 9%.
更多
查看译文
关键词
wide-bandgap oxide semiconductors,resonant tunnelling,intersubband transitions,depolarisation shift
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要