Dynamic large-array terahertz imaging display based on high-performance 1D/2D tellurium homojunction modulators

APL Photonics(2024)

引用 0|浏览2
暂无评分
摘要
Mixed-dimensional van der Waals systems could improve terahertz modulators’ performance by utilizing the advantages of different dimensional materials. However, the reported available mixed-dimensional heterojunctions using two-dimensional (2D) and three-dimensional materials usually sacrifice the modulation speed to realize a higher modulation depth. Here, we creatively integrate one-dimensional (1D) nanowires with 2D nanofilms to construct the novel mixed-dimensional tellurium (Te) homojunction and achieve optimal indices with an ultrahigh modulation depth and a shorter carrier lifetime. In addition, a Te-based large-array imaging element was fabricated to successfully reproduce the painting colors under specific pump conditions as well as the dynamic multicolor display. Further measurements with the introduction of metamaterials prove that the required energy consumption can be significantly reduced by one order of magnitude. Our proposed 1D/2D integration strategy opens a new way to build high-performance terahertz functional devices and greatly expands the application fields of Te nanomaterials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要