Enhancing interferometry using weak value amplification with real weak values

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
We introduce an ultra-sensitive interferometric protocol that combines weak value amplification (WVA) with traditional interferometry. This WVA+interferometry protocol uses weak value amplification of the relative delay between two paths to enhance the interferometric sensitivity, approaching the quantum limit for classical light. As an example, we demonstrate a proof-of-principle experiment that achieves few-attosecond timing resolution (few-nanometer path length resolution) with a double-slit interferometer using only common optical components. Since our example uses only the spatial shift of double-slit interference fringes, its precision is not limited by the timing resolution of the detectors, but is instead limited solely by the fundamental shot noise associated with classical light. We experimentally demonstrate that the signal-to-noise ratio can be improved by one to three orders of magnitude and approaches the shot-noise limit in the large amplification regime. Previously, quantum-limited WVA delay measurements were thought to require imaginary weak values, which necessitate light with a broad spectral bandwidth and high-resolution spectrometers. In contrast, our protocol highlights the feasibility of using real weak values and narrowband light. Thus, our protocol is a compelling and cost-effective approach to enhance interferometry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要