Assessment of the Effects of Abrocitinib on the Pharmacokinetics of Probe Substrates of Cytochrome P450 1A2, 2B6 and 2C19 Enzymes and Hormonal Oral Contraceptives in Healthy Individuals

European Journal of Drug Metabolism and Pharmacokinetics(2024)

引用 0|浏览3
暂无评分
摘要
Abrocitinib is an oral small-molecule Janus kinase (JAK)-1 inhibitor approved for the treatment of moderate-to-severe atopic dermatitis. In vitro studies indicated that abrocitinib is a weak time-dependent inhibitor of cytochrome P450 (CYP) 2C19/3A and a weak inducer of CYP1A2/2B6/2C19/3A. To assess the potential effect of abrocitinib on concomitant medications, drug-drug interaction (DDI) studies were conducted for abrocitinib with sensitive probe substrates of these CYP enzymes. The impact of abrocitinib on hormonal oral contraceptives (ethinyl estradiol and levonorgestrel), as substrates of CYP3A and important concomitant medications for female patients, was also evaluated. Three Phase 1 DDI studies were performed to assess the impact of abrocitinib 200 mg once daily (QD) on the probe substrates of: (1) 1A2 (caffeine), 2B6 (efavirenz) and 2C19 (omeprazole) in a cocktail study; (2) 3A (midazolam); and (3) 3A (oral contraceptives). After multiple doses of abrocitinib 200 mg QD, there is a lack of effect on the pharmacokinetics of midazolam, efavirenz and contraceptives. Abrocitinib increased the area under the concentration time curve from 0 to infinity (AUCinf) and the maximum concentration (Cmax) of omeprazole by approximately 189 and 134
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要