Nanoparticles targeting mutant p53 overcome chemoresistance and tumor recurrence in non-small cell lung cancer

NATURE COMMUNICATIONS(2024)

引用 0|浏览1
暂无评分
摘要
Non-small cell lung cancer (NSCLC) shows high drug resistance and leads to low survival due to the high level of mutated Tumor Protein p53 (TP53). Cisplatin is a first-line treatment option for NSCLC, and the p53 mutation is a major factor in chemoresistance. We demonstrate that cisplatin chemotherapy increases the risk of TP53 mutations, further contributing to cisplatin resistance. Encouragingly, we find that the combination of cisplatin and fluvastatin can alleviate this problem. Therefore, we synthesize Fluplatin, a prodrug consisting of cisplatin and fluvastatin. Then, Fluplatin self-assembles and is further encapsulated with poly-(ethylene glycol)-phosphoethanolamine (PEG-PE), we obtain Fluplatin@PEG-PE nanoparticles (FP NPs). FP NPs can degrade mutant p53 (mutp53) and efficiently trigger endoplasmic reticulum stress (ERS). In this study, we show that FP NPs relieve the inhibition of cisplatin chemotherapy caused by mutp53, exhibiting highly effective tumor suppression and improving the poor NSCLC prognosis. In non-small cell lung cancer (NSCLC), inactivating p53 mutations can drive resistance to cisplatin. Here, the authors develop fluplatin nanoparticles comprising a prodrug of cisplatin and fluvastin (mutant p53 inhibitor) which selectively degrades mutant p53, prevent tumor recurrences in preclinical models of p53 mutant NSCLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要