Experimental characterisation of the spreading of polymeric powders in powder bed fusion additive manufacturing process at changing temperature conditions

Advanced Powder Technology(2024)

引用 0|浏览0
暂无评分
摘要
This study investigates the spreadability behaviour of four different polymeric materials, namely Polyamide 6, Polyamide 6 Black, Polypropylene, and Thermoplastic Polyurethane, under different spreading speeds (30 and 3 mm/s) and powder bed temperatures (25, 80, 110 °C) using a purposely developed experimental apparatus. Macroscopic and microscopic images of the powder layer were taken after completing the powder spreading step. A thresholding-based image processing method was utilised to evaluate the fraction of the bed area not covered by particles (NCF), and the standard deviation of pixel intensities in grayscale images (SDG) was calculated to evaluate powder layer quality in macroscopic images. NCF and SDG can provide quantitative evaluation of the quality of the spread layer, NCF in a logarithmic scale ranking and SDG in a linear scale ranking. A wavelet analysis technique was developed on microscopic panorama images obtained with grazing light to characterise the surface roughness of the layer. Results indicate that the spreadability generally worsens much more significantly than powder flow properties at increasing temperatures and, remarkably, that flowability and spreadability are unrelated. As expected, the temperature effect on powder spreading changes for the different powders are mostly governed by the approach to the powder melting temperature. Minor effects on the final layer quality were also observed at changing spreading speed.
更多
查看译文
关键词
Powder Bed Fusion,Laser Beam,Spreadability,Powder layer quality,Powder flow behaviour,High temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要