Exploring Channel-Aware Typical Features for Out-of-Distribution Detection

AAAI 2024(2024)

引用 0|浏览0
暂无评分
摘要
Detecting out-of-distribution (OOD) data is essential to ensure the reliability of machine learning models when deployed in real-world scenarios. Different from most previous test-time OOD detection methods that focus on designing OOD scores, we delve into the challenges in OOD detection from the perspective of typicality and regard the feature’s high-probability region as the feature’s typical set. However, the existing typical-feature-based OOD detection method implies an assumption: the proportion of typical feature sets for each channel is fixed. According to our experimental analysis, each channel contributes differently to OOD detection. Adopting a fixed proportion for all channels results in several channels losing too many typical features or incorporating too many abnormal features, resulting in low performance. Therefore, exploring the channel-aware typical features is crucial to better-separating ID and OOD data. Driven by this insight, we propose expLoring channel-Aware tyPical featureS (LAPS). Firstly, LAPS obtains the channel-aware typical set by calibrating the channel-level typical set with the global typical set from the mean and standard deviation. Then, LAPS rectifies the features into channel-aware typical sets to obtain channel-aware typical features. Finally, LAPS leverages the channel-aware typical features to calculate the energy score for OOD detection. Theoretical and visual analyses verify that LAPS achieves a better bias-variance trade-off. Experiments verify the effectiveness and generalization of LAPS under different architectures and OOD scores.
更多
查看译文
关键词
ML: Transfer, Domain Adaptation, Multi-Task Learning,DMKM: Anomaly/Outlier Detection,ML: Multi-class/Multi-label Learning & Extreme Classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要