Efficient first principles based modeling via machine learning: from simple representations to high entropy materials

Journal of Materials Chemistry A(2024)

引用 0|浏览0
暂无评分
摘要
High-entropy materials (HEMs) have recently emerged as a significant category of materials, offering highly tunable properties. However, the scarcity of HEM data in existing density functional theory (DFT) databases, primarily due to computational expense, hinders the development of effective modeling strategies for computational materials discovery. In this study, we introduce an open DFT dataset of alloys and employ machine learning (ML) methods to investigate the material representations needed for HEM modeling. Utilizing high-throughput DFT calculations, we generate a comprehensive dataset of 84k structures, encompassing both ordered and disordered alloys across a spectrum of up to seven components and the entire compositional range. We apply descriptor-based models and graph neural networks to assess how material information is captured across diverse chemical-structural representations. We first evaluate the in-distribution performance of ML models to confirm their predictive accuracy. Subsequently, we demonstrate the capability of ML models to generalize between ordered and disordered structures, between low-order and high-order alloys, and between equimolar and non-equimolar compositions. Our findings suggest that ML models can generalize from cost-effective calculations of simpler systems to more complex scenarios. Additionally, we discuss the influence of dataset size and reveal that the information loss associated with the use of unrelaxed structures could significantly degrade the generalization performance. Overall, this research sheds light on several critical aspects of HEM modeling and offers insights for data-driven atomistic modeling of HEMs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要